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Genetic basis of anatomical asymmetry 
and aberrant dynamic functional networks 
in Alzheimer’s disease

Nicolás Rubido,1 Gernot Riedel2 and Vesna Vuksanović3

Genetic associations with macroscopic brain networks can provide insights into healthy and aberrant cortical connectivity in disease. 
However, associations specific to dynamic functional connectivity in Alzheimer’s disease are still largely unexplored. Understanding 
the association between gene expression in the brain and functional networks may provide useful information about the molecular 
processes underlying variations in impaired brain function. Given the potential of dynamic functional connectivity to uncover brain 
states associated with Alzheimer’s disease, it is interesting to ask: How does gene expression associated with Alzheimer’s disease map 
onto the dynamic functional brain connectivity? If genetic variants associated with neurodegenerative processes involved in 
Alzheimer’s disease are to be correlated with brain function, it is essential to generate such a map. Here, we investigate how the relation 
between gene expression in the brain and dynamic functional connectivity arises from nodal interactions, quantified by their role in 
network centrality (i.e. the drivers of the metastability), and the principal component of genetic co-expression across the brain. Our 
analyses include genetic variations associated with Alzheimer’s disease and also genetic variants expressed within the cholinergic brain 
pathways. Our findings show that contrasts in metastability of functional networks between Alzheimer’s and healthy individuals can 
in part be explained by the two combinations of genetic co-variations in the brain with the confidence interval between 72% and 92%. 
The highly central nodes, driving the brain aberrant metastable dynamics in Alzheimer’s disease, highly correlate with the magnitude 
of variations from two combinations of genes expressed in the brain. These nodes include mainly the white matter, parietal and 
occipital brain regions, each of which (or their combinations) are involved in impaired cognitive function in Alzheimer’s disease. 
In addition, our results provide evidence of the role of genetic associations across brain regions in asymmetric changes in ageing. 
We validated our findings on the same cohort using alternative brain parcellation methods. This work demonstrates how genetic 
variations underpin aberrant dynamic functional connectivity in Alzheimer’s disease.
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Introduction
Alzheimer’s disease (AD) is a complex and irreversible neu-
rodegenerative disorder, which causes cognitive impair-
ments leading to dementia. Age is the greatest risk factor, 
but many other risk factors have been identified and asso-
ciated with AD.1 For example, genome-wide association 
studies have identified numerous genetic variants with small 
cumulative effects that may explain up to 58–79% of AD in-
heritability and over 90% of early-onset AD.2 In addition, it 
has been suggested that the significant polygenic component 
of AD risk, could be ‘a valuable research tool complementing 
experimental designs’.3 Any of these genes contribute to 
amyloid accumulation, tau protein misfolding, the innate im-
mune response, regulation of endocytosis, and proteasome- 
ubiquitin activity.4-6 This pathology propagates along 
predefined neuronal pathways.7 Indeed, functional brain im-
aging (fMRI and PET) and spatial patterns of neurodegen-
eration in AD mirror the anatomy of functional brain 
networks.8-11 Evidence from these studies suggests that the 
organization of functional networks is associated with tau 
protein aggregation patterns along interconnected neuronal 
pathways. For example, early stages of the disease present 
with AD-like symptoms and correlate with pathology in 

entorhinal and hippocampal areas, from which further cor-
tical spread leads to increased deterioration of the patients. 
This selective pattern of neurodegeneration can be seen in ana-
tomical MRI studies from AD patients,8,12 which have con-
firmed tissue loss in the entorhinal area, the hippocampus, 
the ventral striatum and the basal part of the forebrain in early 
stages of AD.13 The latter brain structures are well known 
for their high content of cholinergic neurons,14 with long- 
reaching afferents terminating in the cortical mantle and 
hippocampus. These projections play a critical role in learning 
and memory processes15,16 and are severely diminished in pa-
tients with AD,17,18 prompting the development of cholinergic 
treatments as a therapy. The two views are not mutually ex-
clusive, as tau also aggregates in cholinergic cells19 and pre-
sumably terminals20 thereby compromising cholinergic tone 
in these target structures. Since these also comprise cortical 
elements, their inclusion and correlation with dynamic func-
tional connectivity (dFC) network metrics appear warranted.

Brain network analysis from resting-state functional MRI 
(rs-fMRI) has advanced our understanding of the cortical or-
ganization in healthy brain.21 Recently, dynamic brain net-
work analysis, which considers temporal fluctuations in the 
resting-state fMRI signal, has revealed patterns of activity 
that are usually averaged out by conventional functional 
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network analysis. These patterns of activity, termed dynamic 
networks, reveal transient (metastable) dynamical states, 
likely involved in cognitive processing.22 In this context, dy-
namic functional networks (dFNs) analysis from fMRI data 
has shown a potential to unveil clinically relevant informa-
tion.21,23 Capturing the evolving architecture of brain net-
works might also provide pathophysiological insights into 
neurological and neurodegenerative conditions, providing 
better diagnostic or prognostic indicators.

The non-stationary nature of the brain organization and the 
differences across healthy and diseased cohorts have been 
widely investigated by means of variations of the dwell time 
within different sub-network configurations.24 For example, 
a study that investigated the evolution of dFC disruptions 
across the AD spectrum has shown differences in patients 
with dementia compared to mild cognitive impairment 
(MCI) in terms of local dFC within the temporal, frontal- 
superior and default-mode sub-networks. Moreover, a de-
creased global metastability between functional states has 
also been reported.25,26 Consistently, studies showed a pro-
gressive loss of whole-brain metastability according to the 
severity of cognitive impairment along the AD continuum, 
reaching statistical significance only in patients with dementia 
when compared with healthy controls (HCs).27,28 These find-
ings support the hypothesis that global patterns of brain activ-
ity in AD are progressively altered, and eventually lead to a loss 
of ‘dynamic complexity’ (i.e. the decrease in possible function-
al network’s configurations). However, neurobiological corre-
lates of such differences have remained elusive. We therefore 
here explored whether functional brain networks and, 
in particular, their nonstationary nature are explainable by 
genetic association related to AD.

Materials and methods
Participants and cohorts
Genetic data used in this study were obtained from gene ex-
pression maps of post-mortem healthy human brains 
from the Allen Human Brain Atlas (AHBA) Institute.29

Post-mortem brains from six males and females between 
18 and 68 years of age, with no known neuro-pathological 
history, were selected for the gene expression mapping.

Data used in the imaging part of this study were obtained 
from the Alzheimer's Disease Neuroimaging Initiative 
(ADNI) database. We downloaded demographic, clinical 
and MRI data from N = 315 participants. The main inclu-
sion criterion was that the fMRI datasets were acquired 
using the same resting-state protocols (see the ‘Imaging data-
sets and processing’ section). The 315 participants were se-
lected from HC, MCI and AD groups. Demographic and 
clinical characteristics of the participants averaged across 
each group are shown in Table 1.

Genetic data and gene expression
Microarray gene expression data from post-mortem healthy 
human brains were downloaded from the AHBA.29 The atlas 

consists of 926 brain regions; each region tested using an ar-
ray of 58 692 probes that correspond to 29 181 distinct 
genes. For the purpose of this study, the 926 AHBA regions 
were down-sampled to 121 regions of the Juelich Brain Atlas 
(JBA) (see also the ‘Construction of dynamic functional net-
works’ section), using the detailed anatomical labels pro-
vided by AHBA. Similarly, the 29 181 distinct genes 
provided by the Atlas were down-sampled to 71 genetic var-
iants associated with Alzheimer’s disease (ADG) and 13 gen-
etic variants associated with the cholinergic pathway 
(AChG). Given the involvement of the cholinergic system 
in the early stages of AD, we sought to address the question: 
How do genetic variants associated with the brain choliner-
gic system contribute to functional network involvement in 
AD?

Genes of interest were selected from The Human Protein 
Atlas (HPA) database.30 The data base generates integrated 
human gene-associations from curated databases and text 
mining. The HPA consists of 10 separate sections, each fo-
cusing on a particular aspect of the genome-wide analysis 
of the human proteins. We selected genes based on a query 
of ‘cholinergic pathway’, performed in April 2022. Using 
this procedure we obtained information about 16 AChG. 
Finally, 13 genes from the HPA database, which were also 
found in the AHBA gene-expression map, were used for 
the analysis. Similarly, 71 ADG variants were used for the 
part of the analysis of the ADG brain expression maps. 
The ADG variants were identified using 84 genes provided 
by Sims et al.2 and then compared with the AHBA database, 
resulting in down-sampled 71 variants used in the analysis. 
In summary, using this procedure, we obtained either 
121 × 71 or 121 × 13 gene expression map for ADG and 
AChG variants, respectively. These maps were used for fur-
ther analysis and to obtain the overall genetic map of the 
brain using principal component analysis (PCA).

Statistical analysis
PCA of gene expression in the brain
To obtain a single vector that explains most of the variations 
in genetic data across brain regions, we performed a PCA on 
the ADG and AChG maps. We then used the first principal 
component for further analysis and to explore genetic 

Table 1 Participants’ demographic and clinical 
characteristics

Demographics Healthy MCI AD

Number 141 128 46
Sex (F/M) 68/73 52/76 17/29
Age (SD)—years 80(6) 77(5)a 80(6)
Clinical scores
MMSE 28(4) 27(3) 22(4)a,b

AD, Alzheimer’s disease; MCI, mild cognitive impairment; F, females; M, males; 
SD, standard deviation. 
aSignificant difference (P < 0.01) when compared with HC. 
bSignificant difference (P < 0.01) when compared with MCI.
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associations with the functional network metrics—node 
strength and eigenvector centrality. We correlated the first 
principal component to the node strength and eigenvector 
centrality cortical maps. In the final step, we visualized the 
gene expression levels and changes in the network metrics 
between the groups, and we identified the regions whose 
gene expression level was correlated with the changes. 
Specifically, we visualized the relationship between gene ex-
pression in the regions and pair-wise changes in network me-
trics across the three groups.

Imaging datasets and processing
We analysed rs-fMRI (or fMRI in the text) data from 
315 individuals. fMRI were acquired using the ADNI-3 
basic Echo Planar Imaging-blood-oxygen level-dependent 
(BOLD) protocol (details at ADNI imaging protocol) and 
in Weiner et al.31 In short, the participants had their scans 
taken for up to 10 min using the same two-time accelerated 
3T scanners, following an even/odd interleaved axial-slicing 
(inferior to superior) of 3.4 mm with (3.4375 mm)2 pixels 
(FOV = 220 × 220 × 163 
mm; P >> A phase encoding; TE = 30 ms; TR = 3000 ms).

Image pre-processing, including brain extraction, registra-
tion to standard MNI space and brain tissue segmentation 
was carried using FMRIB’s pipeline fsl anat32 at its default 
settings. Pre-processing of fMRI was done by applying the 
FMRIB’s Expert Analysis Tool, FEAT, resulting in voxel- 
wise BOLD signals of NT = 197 data points (197×TR acqui-
sition times). Details on this analysis can be found in the 
‘Image pre-processing details’ section of the Supplementary 
material.

Construction of dynamic functional 
networks
Cortical regions—defining the network nodes—are based on 
either the Juelich (JBA)33 or the Harvard-Oxford Brain Atlas 
(H-OBA)34 for each participant’s fMRI. This resulted in two 
cortical parcellations of Nnode = 121 or (48 + 21) nodes (re-
gions/parcels), respectively. Details of the atlases given in 
Supplementary Table 2. JBA is a 3D atlas containing cyto-
architectonic maps of cortical areas and subcortical nuclei. 
The atlas is probabilistic, which enables it to account for var-
iations between individual brains.

The signal of each node is determined by averaging fMRI 
BOLD signals across the regional voxels. We then defined func-
tional links between all possible node pairs by Pearson’s correl-
ation coefficient, ρ(i, j) (node—i; and node—j). See for example, 
our earlier work22 for details on network construction from 
resting-state fMRI data. We also set a 99% significance thresh-
old to the value of each pair-wise correlation to remove spuri-
ous correlations. That is, all pairwise correlations that were not 
significant at P < 0.01 were excluded from any further analyses. 
This definition of functional links as a pair-wise correlation be-
tween regional BOLD time series, results in a single-subject, 
symmetric (undirected), weighted (with positive and negative 

weights), functional network that was built on statistically sig-
nificant (temporal) interactions between its nodes.

In more detail, the dFN of a single participant was calcu-
lated using a sliding window approach. The exploration of 
window lengths (Δt) on dFC networks and their characteris-
tics, as well as choosing an optimal window-length for the 
analysis of fMRI data, has been described previously.35

Here, we used a half-overlap between consecutive sliding 
windows. Specifically, tm is a sliding time window defined 
by a multiplication factor (m) of the window length (Δt), 
and the full length of the BOLD signal (NT); tm = mΔt/2, 
with m = 0, 1,… < NT/Δt, and Δt = 20 data points, account-
ing to 1 min of scan time. As a result, ρ(i, j) changes with 
time, depending on the start of the sliding window. We 
used the significance threshold from the FC of the entire 
BOLD time series, given by ρ(i, j) for each participant, to 
threshold the dFN ρtΔ(i, j). This corresponds to keeping 
sliding-window correlations that are higher than or equal 
to the corresponding correlations from the entire node sig-
nals (i.e. when m = 0 and Δt = 197). Consequently, when 
using the HOBA and a sliding window of Δt = 20 points (re-
sulting in 18 windows over the total signal), the average per 
cent of links discarded was 28%, whereas when using the 
JBA, the average per cent of discarded links per participant 
was 30%.

In addition to the network analysis performed for the pur-
pose of this study, our more detailed analysis of the dFC in 
the three clinical groups36 shows how the dFC pair-wise 
links evolve over the acquisition time. The analysis per-
formed there also accounts for different network realiza-
tions, constructed on re-sampled/bootstrapped cohorts. 
The results show consistency across the resampled distribu-
tions. Here, we only used dFC network metrics calculated 
on the group’s average, to simplify the analysis and prevent 
any redundant results.

Characterization of functional 
networks
We characterized functional connectivity in three study 
groups depending on the importance of the network nodes. 
A straightforward method of assessing the importance of a 
network node is to compute its centrality. The centrality of 
a node is a measure that quantifies how important or influen-
tial a node is within a network. Centrality can be expressed in 
various ways; thus, there are multiple types of centrality 
measures. We characterized the importance of each node in 
the dFNs of HC, MCI and AD individuals by calculating 
the node strength and eigenvector centrality. We analysed 
these two basic centrality network measures from the 
Nnodes × Nnodes correlation matrices of each participant and 
sliding window that is described in the section above.

Node strength
The simplest measure of network centrality is the so-called 
degree centrality, or simply node degree, which represents 
the number of connections a node has with other nodes in 
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the network. In weighted networks, this becomes the node 
strength or weighted degree, measuring the strength of the 
functional connections of node i. For dFC networks, 
the node strength is calculated in each sliding window using 
the equation below:

κtΔ(i) =
􏽘Nnode

j=1

ρtΔ
(i, j) (1) 

where i and j are node indices and tΔ = t ∈ [tm, tm + Δt] the slid-
ing window. ρtΔ(i, j) is an element of the correlation matrix re-
presenting the strength of the pair-wise interaction between 
nodes i and j for the sliding window tΔ.

Eigenvector centrality
Eigenvector centrality is the centrality measure based on the 
assumption that connections to more influential nodes are 
more important than connections to less relevant nodes, 
while also taking into account the centrality of their neigh-
bours.37 In simple terms, eigenvector centrality is the princi-
pal eigenvector of the network, which explains most of the 
variance in the data. Its principle is that links from important 
nodes (as measured by κtΔ) are worth more than links from 
unimportant nodes. All nodes start off equally, but as the 
computation progresses, nodes with more links gain import-
ance. Their importance also influences the nodes to which 
they are connected to. After recomputing many times, the va-
lues stabilize and give the final eigenvector centrality values.

Eigenvector centrality was calculated according to

etΔ(i) =
1

λtΔ

􏽘Nnode

j=1

ρtΔ(i, j)e(j)tΔ
(2) 

where λtΔ is a constant that denotes the largest eigenvalue of ρtΔ 
and etΔ(i) denotes the ith coordinate of the corresponding prin-
cipal eigenvector; that is, a centrality score etΔ(i) for each node i 
in an undirected network that fulfils ϱtΔ 

→etΔ = λtΔ 
→etΔ. Thus, 

the eigenvector centrality etΔ(i) of a node i is given by the 
weighted sum of the values within the principal eigenvector 
of direct neighbours, ρtΔ(i, j)etΔ( j), and scaled by the propor-
tionality factor λ−1

tΔ . Here, ρtΔ(i, j) is an element of the correl-
ation matrix representing the strength of the pair-wise 
interaction between nodes i and j during the sliding window 
tΔ = t ∈ [tm, tm + Δt], defining a time-varying vector →etΔ, whose 
elements are the etΔ(i).

Results
Our main analyses were based on two independent data sets: 
(i) gene expression data from six post-mortem brains and (ii) 
fMRI data from a sample of 315 individuals from three clin-
ical groups: HCs, MCI and AD. dFNs were analysed across 
the three groups using a sliding window approach applied to 
the Juelich Brain Atlas regional BOLD-signal time series. The 
replication analysis was performed on the same subjects 

using another brain parcellation with a lower spatial reso-
lution. Genetic variants associated with AD and the choliner-
gic brain pathway were mapped onto brain regions (of two 
brain atlases), and correlated with the dFC network metrics 
to highlight different measures of cortical organization 
across different modalities and scales.

Gene expression
To test the hypothesis that the co-expression of genes of 
interest in the brain is associated with the differences ob-
served in dFC between the three groups, we utilized gene ex-
pression maps from the AHBA. We used two sets of gene 
co-expression maps in the brain: one that consists of genes 
implicated with AD (71 genes) and one that consists of 
gene variants associated with the cholinergic brain pathways 
(13 genes). To reduce the dimensionality of the data we used 
their respective principal components, which capture the 
overall association patterns of the genes × brain regions 
maps.

Based on the 71 genes associated with AD, we found that 
the first principal component of gene expression explains 
51.16% of co-expression variance. Adding the additional 
four components explained 72.20% of total variance. 
Interestingly, 13 genetic variations associated with the cholin-
ergic system in the brain explained 72.33% of co-variations 
across the JBA cortical parcellation (where the first five com-
ponents explained 92.06% of the total variance in the data). 
Figure 1 depicts heat-maps of coefficients of the first principal 
component of AChG and ADG associations (lower panel left). 
Their correlations with the dFC measures are described in the 
‘Association between functional networks and gene expres-
sion’ section.

Figure 2 visualizes brain maps of the first principal compo-
nent coefficients for ADG and AChG co-expression in JBA 
regions. Here, for the purpose of brevity, we show only the 
first 10 nodes (with the highest coefficient) for both maps. 
Although—visually very similar—the two maps differ in 
the regions mapped out (see also Table 2). Interestingly, 
most of the regions are spatially very close to one another. 
Common regions for positive coefficients: amygdala group, 
hippocampal-amygdaloid transition area, cortico-spinal 
tract, fornix, lateral and medial geniculate and mamillary 
body, and insular cortex. Differential regions: uncinate fas-
cicle and superior occipito-frontal fascicle (both found only 
in AD-associated-gene maps).

The first principal component coefficients of ADG and 
AChG patterns of variations associated with H-OBA cortical 
regions is shown in Supplementary Fig. 1. Given that only 
sub-cortical H-OBA regions’ labelling is lateralized, separate 
analysis was performed on either sub-cortical or cortical re-
gions of this atlas. The patterns of associations, in terms of 
their left–right asymmetry are very similar to those obtained 
for the JBA (see Fig. 2). It should be noted that the separate 
mapping of cortical and sub-cortical regions of the H-OBA 
showed that AChG are predominately associated with 
more central regions such as parahippocampus and cingulate 
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cortices, and ADG are predominately associated with the 
cortical surface regions of the, e.g. occipital and temporal 
lobes (see Supplementary Table 1).

Association between functional 
networks and gene expression
In addition to the brain-gene-expression maps, we also ex-
amined the relationship between maps and dFC metrics of 
interest. In particular, building on the emerging gene expres-
sion and cortical-architecture relations, we examined asso-
ciations between the dFC network metrics (node strength 
and eigenvector centrality) and the first principal component 
of the ADG and AChG cortical variations. This was done by 
correlating the first principal components of genetic ×  

regional co-variations with the pair-wise contrast between 
either the node strength or eigenvector centrality across the 
three groups, providing six values for each measure indicat-
ing weights of correlations.

Table 3 shows correlations between the first principal 
component and the two network measures, for the AD poly-
genic risk (ADG) and for the cholinergic pathway genes 
(AChG). As an illustration, Fig. 3 shows the correlation be-
tween AD/HC contrast for eigenvector centrality and the 
principal components of AChG/ADG variations. Given the 
high similarity in the two graphs, we also calculated the cor-
relation between the two principal components (see Fig. 1, 
lower panel left), which reached a value of 0.95 (P << 106). 
We focused only on the first principal component, because 
in both cases they explain the highest portion of the variance 

Figure 1 PCA of gene co-expression across the Juelich Brain Atlas (JBA) regions. Upper panel: coefficients of the first principal 
component of the AChG and ADG gene covariations, and of 200 randomly selected genetic variants (Rand), within the JBA regions. Lower panel 
left: heat maps of the first principal component of the AChG and ADG gene co-variations within the JBA regions. List of regions and their ranks is 
given in Supplementary Table 2. Lower panel right: a scatter plot of the correlation between first principal component of AChG and ADG polygenic 
scores for cortical associations ρ = 0.95 P << 10–6.
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in gene expression in the brain. We argue that the relatively 
high AChG co-expression in the brain (quantified by the first 
PC) most likely reflects a property of the JBA parcellation, 
which includes the superficial white matter fibres just beneath 
the specific cytoarchitecturally defined cortical areas. 
Another, equally possible, explanation is the division of the 
hippocampus into 10 sub-regions, where the first PC of 
AChG co-expression across the JBA could map cholinergic 
signalling in the hippocampus (see, e.g. Haam and Yakel38).

Dynamic functional networks by 
clinical groups
Finally, we briefly describe the behaviour of the dFC networks 
in the three groups using the two centrality measures: the node 
strength and eigenvector centrality. Figure 4 shows the two 
network metrics across 121 regions (nodes) of the JBA, 
when averaged across the sliding windows. We observed stat-
istical differences between the groups at the local (nodal) le-
vel: the dFC node strength across the white matter JBA 

regions differs between the AD and MCI and AD and HC 
groups, where the AD subjects show higher values than 
the other two groups. Similar statistical differences also ex-
ist for the JBA visual cortex areas, for which the AD subjects 
showed lower node strength than the other two groups. The 
eigenvector centrality revealed more ‘irregular’ differences, 
with the parietal and the occipital nodes’ being consistently 
different when comparing AD and MCI and HC subjects. A 
more comprehensive analysis of the dFC in the three 
groups36 showed how the fluctuations in the dFC pair-wise 
links evolve over the acquisition time. Here, we only show 
the averaged values of these measures for the purpose of 
visualizing their values across the JBA regions.

Discussion
Here, we examined putative associations between genetic 
variations associated with AD and dFC from data of 315 in-
dividuals from three age-matched and sex-balanced clinical 
groups: AD, MCI and healthy seniors. Our results provide 

Figure 2 Cortical maps of gene expression across the Juelich Atlas regions. Upper panel: the first principal component of the ACh gene 
co-variations with the JBA regions. Lower panel: the first principal component of the AD gene co-variations with the JBA regions. In both panels, 
cortical maps of positive coefficients of the PCA are given on the left side and negative on the right. List of regions and their ranks is summarized in 
Table 2. Common regions for positive coefficients: amygdala group, hippocampal-amygdaloid transition area, corticospinal tract, fornix, lateral and 
medial geniculate and mamillary body and insular cortex. Differential regions: uncinate fascicle and superior occipito-frontal fascicle (both found 
only in AD-associated-gene maps).
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evidence of the relationship between dFC and the gene ex-
pression in the brain associated with AD, especially those 
co-expressed in the cholinergic pathways. We show that 
measures of network centrality, of any given node across 
the dynamic functional connections, correlate with the level 
of gene expression. Higher gene expression is associated with 
higher positive contrast in nodal strength between AD and 
MCI and HC, and this was most prominent in white matter 
regions. Lower genetic risk is associated with stronger (by 
absolute value) negative contrast between the AD and 
MCI/HC groups in the parietal and visual areas.

dFC has been identified as a better predictor of cognitive 
impairment in AD patients, compared to conventional static 
FC analysis. Numerous studies have provided compelling 
evidence that the classification of AD from MCI or HC sub-
jects significantly improved when using the dFC networks as 
a defining feature of altered brain activity in AD.25,39-41

However, despite this evidence for its utility, how dFC relate 
to the micro-scale brain biology remains elusive. Here, we in-
vestigated dFC network metrics and genetic variations asso-
ciated with AD, in an attempt to identify how large-scale 
network dynamics in AD relate to the microscale properties 
of cortical vulnerability of the disease, i.e. to variations in the 
regional gene expression. Our aim was to add a new genetic 
dimension to the differences in dFC, which has been estab-
lished between AD patients and healthy subjects, yet only 
in terms of dynamic metastability and nodal importance in 
the dFC. We aimed specifically to compare, dynamic meta-
stability and nodal strength using the parcellation of the 
Juelich cytoarchitectonic atlas. This is a multimodal brain at-
las created to delineate white matter fibre pathways with 
known associated functions, as well as major white matter 
tracts and grey matter regions.33

An important question in mapping neurodegenerative 
processes in AD remains—how do the brain maps of gene ex-
pression relate to brain functional connectivity maps? By in-
corporating information about regional gene expression in 
the brain to annotate dFC changes in AD and MCI subjects, 

Table 2 Regions of the Juelich Atlas based on positive or negative associations with gene expression of the cholinergic 
pathways (AChG) in the brain or Alzheimer’s disease (ADG)

AChG-positive PC coeff. ADG-positive PC coeff.

Amygdala-centromedial group L Amygdala-centromedial group L
Amygdala-centromedial group R Amygdala-superficial group L
Amygdala-superficial group L Hippocampus hippocampal-amygdaloid transition area L
Hippocampus hippocampal-amygdaloid transition area L Corticospinal tract R
Corticospinal tract R Corticospinal tract L
Corticospinal tract L Fornix
Fornix Lateral geniculate body R
Lateral geniculate body R Lateral geniculate body L
Lateral geniculate body L Mamillary body
Mamillary body Medial geniculate body R
Medial geniculate body R Superior occipito-frontal fascicle L
Medial geniculate body L Uncinate fascicle L
Insula Ig1 L Insula Ig1 L
AChG-negative PC coeff. ADG-negative PC coeff.
Broca’s area BA45 L Inferior parietal lobule PFm L
Inferior parietal lobule PFm L Primary somatosensory cortex BA2 R
Primary auditory cortex TE1.2 L Primary somatosensory cortex BA3a R
Primary somatosensory cortex BA2 R Secondary somatosensory cortex/Parietal operculum OP2 L
Secondary somatosensory cortex/Parietal operculum OP2 L Superior parietal lobule 5M R
Secondary somatosensory cortex/Parietal operculum OP2 R Superior parietal lobule 7PC L
Superior parietal lobule 5M R Superior parietal lobule 7P R
Superior parietal lobule 7A R Visual cortex V1 BA17 R
Superior parietal lobule 7M L Visual cortex V2 BA18 R
Superior parietal lobule 7PC L Visual cortex V3V L
Superior parietal lobule 7P R Visual cortex V3V R
Visual cortex V2 BA18 R Visual cortex V3V R
Visual cortex V3V R Visual cortex V3V R

First 10% ranked regions is shown. 
L, left; R, right; BA, Brodmann area; PC, principal component.

Table 3 Correlation analysis for the first principal 
component (z-score) of gene expression data and the 
two dFC metrics, eigenvector centrality (z-score) and 
node strength (z-score)

e κ

AChG ADG AChG ADG

AD/MCI 0.30**** 0.33**** 0.27** 0.27**
AD/HC 0.36*** 0.36**** 0.26** 0.26**
MCI/HC 0.21* 0.16 −0.08 −0.11

e, eigenvector centrality; κ, node strength; AD, Alzheimer’s disease; MCI, mild cognitive 
impairment; AChG, genetic variants of the cholinergic system; ADG, genetic variants 
associated with AD; correlation coefficients and their respective significance values (P) 
are ****P << 1e−5; ***P << 1e−4; **P = 0.003; *P = 0.02.
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neural gene expression maps have been created as innovative 
tools explaining sources of variations in neuroimaging fea-
tures across a range of neurodegenerative disorders, includ-
ing Parkinsonism and dementia.42-44 Here, we provide the 
first attempt to explore this issue mapping genes and func-
tional connectivity in the AD continuum. For this, we incor-
porated information about regional gene expression in the 
brain to annotate dFC changes and contrasted these with 
MCI and control subjects.

First, we produced gene expression maps onto the JBA re-
gions, using genetic variants associated with AD (71 genes in 
total). Secondly, we also mapped genes associated with the cho-
linergic brain pathways (13 genes). This is based on the ration-
ale that during MCI and AD there is a progressive loss of 
forebrain cholinergic neurons giving rise to a widespread 
cortical dysfunction (see Hampel et al.45 and Ferreira-Vieira 
et al.46 for review). Interestingly, the regions showing 
AD-related-polygenic associations largely overlap with those 
showing cholinergic pathways-related genetic associations 
and include: amygdala group, hippocampal-amygdaloid tran-
sition area, corticospinal tract, fornix, lateral and medial gen-
iculate and mamillary body, and insular cortex. These maps 
are similar at the regional level, but show differences in the re-
gional sub-areas and/or their inter-hemispheric homologues. 
While regions associated with cholinergic pathway gene 
co-expression are highly symmetrical and found in both 
hemispheres equally, regions associated with AD-related 
genetic variations are asymmetrically distributed across the 
hemispheres (see Table 2). Areas with highly emotional func-
tions are more associated with AD genes in the left hemisphere, 
sensory information processing is more in the right. This is the 
first study of this kind to link cholinergic genetic associations 
with fMRI. The data therefore suggest that there is no 
hemisphere-selective vulnerability to cholinergic degeneration 
and functional loss, but rather both hemispheres are affected 

Figure 3 The correlation between dFC eigenvector centrality and genetic variations. Contrast in eigenvector centrality (z-score) 
between AD and HC group was correlated with the first principal component (z-score) of gene expression associated with AD (upper panel) and 
cholinergic system (lower panel). Correlation coefficients: rADG = 0.363 P < 0.0001; rAChG = 0.356; P < 0.0001.

Figure 4 dFC network metrics in in AD, MCI and HC 
groups. Upper panel: eigenvector centrality and (lower panel) node 
strength, shown when averaged over the 121 Juelich Brain Atlas 
regions.
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in the same manner in AD. Our findings are consistent with 
early reports on the extent of left–right symmetry in the cholin-
ergic deficits in AD brains, which was found to be symmetric-
ally distributed compared to more asymmetrical 
morphological lesions.47,48

Table 2 shows that it is the ADG variants which predomin-
antly map out regions in the left hemisphere. In patients with 
AD, the left hemisphere is more severely affected, both structur-
ally and metabolically.49-51 In addition, a trend for faster grey 
matter loss in the left hemisphere was also observed in age 
matched controls.52 Our results indicate that the variations in 
lateralization of the brain tissue loss in healthy ageing, but 
also in AD, may be explained by AChG and ADG variants ex-
pressed across the brain structures. As supported by early stud-
ies in AD, such loss is more symmetrical at the early stages, 
while becoming predominantly associated with the left hemi-
sphere as the disease progresses.53 We have previously reported 
similar heterogeneity in brain atrophy across the cortical sur-
face, albeit in different forms of dementia8 as well as in healthy 
ageing.54 This was validated across the H-OBA sub-cortical re-
gions (see Supplementary Table 1), where 7 out of 10 regions 
associated with ADG variants are in the left hemisphere. 
However, given the differences in resolution, but also in label-
ling of these regions in the two atlases, our results should not be 
considered a 1:1 mapping at the regional level.

Conclusion
In summary, we aimed to investigate the relationship be-
tween genetic variations and dFC in AD, MCI and healthy 
individuals. Linking gene expression and cortical regions 
provided evidence for variations in terms of hemisphere- 
selected vulnerability to AD. Furthermore, our findings indi-
cated an overlap in genetic variations associated with AD 
and those associated with the brain cholinergic pathways; 
these are considered drivers of dFC aberrations in the dis-
ease. The results may provide a possible genetic substrate 
for changes in the metastable dynamic of cortical networks 
in AD, and provide evidence of genetic associations with 
asymmetric changes in the cortical surface in healthy ageing 
and AD. Our work uncovers a fundamental feature of the 
brain connectivity at differential scales.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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